


Correction to Highly Sensitive NH₃ Detection Based on Organic Field-Effect Transistors with Tris(pentafluorophenyl)borane as Receptor

Weiguo Huang, Kalpana Besar, Rachel LeCover, Ana María Rule, Patrick N. Breysse, and Howard E. Katz*

J. Am. Chem. Soc. 2012, 134, 14650-14653. DOI: 10.1021/ja305287p

Page 14651. The chemical shift in the ¹⁹F NMR spectrum of free tris(pentafluorophenyl)borane (top ¹⁹F NMR spectrum in corrected Scheme 1) was influenced by the water (about 640 ppm) in ordinary C_6D_6 . Therefore, we would like to offer corrected spectra, taken in anhydrous C_6D_6 (<10 ppm water).

Scheme 1. NH₃-TPFB Interaction and ¹⁹F NMR Spectra of TPFB and the TPFB-NH3 Complex Synthesized and Isolated from Toluene-Chloroform Solution^{*a*}

^{*a*}Blue denotes hydrogen bonding, and red denotes B–N interaction.

The tris(pentafluorophenyl)borane purity is nominally 95% (from Sigma Aldrich) and was handled in a glovebag filled with dry nitrogen and stored in dynamic vacuum. Due to the possibility that the 5% impurity may be water—borane or other adduct and may be exchanging in solution, the peaks in the tris(pentafluorophenyl)borane ¹⁹F NMR spectrum appear broad and slightly shifted. The ¹⁹F NMR peaks for 100% pure tris(pentafluorophenyl)borane in C₆D₆ are available in the references given below: δ –129.1(*o*-F), –142.0 (*p*-F), –160.3 (*m*-F). The conclusions originally presented regarding response of devices to ammonia are unaffected by this revision; in fact, the spectra provide additional confirmation that the compound used in the published study was indeed anhydrous.

ACKNOWLEDGMENTS

We thank Professor Warren E. Piers (University of Calgary, Canada) and Professor Gregory C. Welch (Dalhousie University, Canada) for drawing our attention to this point.

REFERENCES

 Piers, W. E. The Chemistry of Perfluoroaryl Boranes. Advances in Organometallics Chemistry, Elsevier Press: Oxford, U.K., 2005; Vol 52.
Beringhelli, T.; Maggioni, D.; D'Alfonso, G. Organometallics 2001, 20, 4927. (3) Bergquist, C.; Bridgewater, B. M.; Harlan, C. J.; Norton, J. R.; Friesner, R. A.; Parkin, G. J. Am. Chem. Soc. 2000, 122, 10581.

Published: October 16, 2012

